07.04.2017 / by / Генеалогия / No Comments

Умножение вектора на матрицу

По обычным правилам матричного умножения осуществляется умножение на матрицу слева вектора-столбца, а также умножение вектора-строки на матрицу справа. Поскольку элементы вектора-столбца или вектора-строки можно записать (что обычно и делается), используя один, а не два индекса, это умножение можно записать так:

для вектора-столбца v (получая новый вектор-столбец Av):

для вектора-строки s (получая новый вектор-строку sA):

Вектор-строка, матрица и вектор-столбец могут быть умножены друг на друга, давая число (скаляр):

(Порядок важен: вектор-строка слева, вектор-столбец справа от матрицы).

Эти операции являются основой матричного представления линейных операторов и линейных преобразований координат (смены базисов), таких, как повороты, масштабирования, зеркальные отражения, а также (последнее) матричного представления билинейных (квадратичных) форм.

  • При представлении вектора вещественного векторного пространства в ортонормированном базисе (что эквивалентно использованию прямоугольных декартовых координат) соответствующие ему вектор-столбец и вектор-строка, представляющие собой набор компонент вектора, будут совпадать (поэлементно), отличаясь лишь формально своим изображением для корректности матричных операций (то есть один получается из другого просто операцией транспонирования). При использовании же неортонормированных базисов (например, косоугольных координат или хотя бы разных масштабов по осям) вектор-столбец соответствует компонентам вектора в основном базисе, а вектор-строка — в базисе, дуальном основному[4] (Иногда о пространстве векторов-строк говорят также как об особом, дуальном пространству векторов-столбцов, пространствековекторов).

Заметим, что обычной мотивировкой введения матриц и определения операции матричного умножения (см.тж.в статье об умножении матриц) является именно введение их, начиная с умножения вектора на матрицу (которое вводится исходя из преобразований базиса или вообще линейных операций над векторами), а уже затем композиции преобразований сопоставляется произведение матриц. Действительно, если новый вектор Av, полученный из исходного вектора v преобразованием, представимым умножением на матрицу A, преобразовать теперь ещё раз, преобразованием, представимым умножением на матрицу B, получив B(Av), то, исходя из правила умножения вектора на матрицу, приведенного в начале этого параграфа (используя ассоциативность умножения чисел и меняя порядок суммирования), нетрудно увидеть в результате формулу, дающую элементы матрицы (BA), представляющую композицию первого и второго преобразований, и совпадающую с обычным определением матричного умножения.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *